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General expressions are derived for the load distribution acting on an arbitrary
curved and twisted rigid or deformable slender cylindrical structure moving in an
ambient non-uniform potential flow field. Further simplifications are presented for
flexible shapes in the limit of a small cross-section. The general analysis is illustrated
for straight, toroidal and helical shapes. These shapes are frequently encountered in
nature and are good examples of typical fluid–structure interaction problems.

1. Introduction
One of the fundamental problems in fluid mechanics is the computation of the

distribution of the hydrodynamic loading along a slender deformable (time-dependent)
structure with an arbitrary flexible central line, which is moving relative to an imposed
stream. The time-dependent motion of the thin body is generally coupled with the
ambient non-uniform flow field. The structure can be either rigid or flexible, straight
or curved (including twist) and it can move in an arbitrary manner in an unsteady
spatially varying current. It is further assumed in this paper that the surrounding flow
field can be studied within a potential realm.

Applications of this problem in nature are abundant and include cases when the
structure is composed of liquid particles (such as vortex filaments, Klein & Knio
1995) or bubbles and drops (Longuet-Higgins 1989). Below we mention only a few
examples. Starting from the simple case of a rigid structure, one can immediately refer
to the important problem of determining the hydrodynamic loading on a straight
rigid cylinder embedded in an ambient non-uniform potential flow field (e.g. Lighthill
1986; Rainey 1989 and Chaplin, Rainey & Yemm 1997), which is often encountered
in ocean platforms. Then, in order to consider the loading on a closed thin structure
(for example, a torus or a helix), one can utilize the results derived for a straight
cylinder and extend them to the case of a structure with a curved central line.

Next, by allowing the central line of the cylindrical structure to be time-dependent,
it is possible to tackle the stability problem of elastic cable dynamics in a non-
uniform ocean environment (see, for example, Zajac 1962) or to determine the spatial
shape of an underwater towed cable array used for ocean explorations (Srivastava
& Ganapathy 1998). In addition, we are interested in a wide class of hydroelastic
problems concerning slender deformable bodies with intrinsic nonlinear elasticity (such
as the Kirchhoff rod, Goriely & Tabor 1997) embedded in a potential stream, where
the elastics of the structure are combined with the hydrodynamic force distribution.

The reader can be also referred to the problem of fish locomotion (e.g. Taylor 1952
and Lighthill 1960) and a bacterial fibre (Shi & Hearst 1994) or to self-propulsion
of a general oscillating deformable surface (Miloh & Galper 1993, Appendix 1). The
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hydro-acoustics problem of towed streamers (Dowling 1994), where the temporal vari-
ation of the cylinder’s central line is of critical importance, should be also mentioned.
Yet another challenging problem is the stability of the motion of a viscous liquid jet
(deformable and curved) moving in a potential realm (Entov & Yarin 1983), which
requires the evaluation of the force distribution along the jet. Finally, it can be noted
that the dynamics of a curved vortex filament with a finite core, or the dynamics of
two interacting slightly curved vortex filaments (Klein & Knio 1995), depend on the
pressure loading on the vortex filament due to the ambient flow field. Such problems
require the consideration of the structure with its intrinsic curvature and torsion. In
this context we mention for example the helical structures which are often encoun-
tered in many different forms from DNA at the molecular level (e.g. Hunt & Hearst
1991), to large twisted vortex filaments (Ricca 1994) at the macro-level.

A slightly different angle of presentation of the force loading exerted on a curved
slender structure originates from the problem of finding a suitable modification to the
classical form of the Kirchhoff equation governing the motion of a rigid body in an
otherwise quiescent fluid (Lamb 1945, § 6), for the case of a deformable body moving
arbitrarily in an ambient potential flow field. This problem has been treated over a
long period of time by a number of investigators commencing with Taylor (1928),
but only recently has a complete solution been given by Galper & Miloh (1995).
The formulation is considerably simplified if the body is assumed to be small with
respect to the characteristic length of the flow non-uniformity (i.e. weak straining). A
question which naturally arises then is how to handle long slender structures where
the weakly non-uniform flow assumption may hold only at the cross-sectional plane
(i.e. normal to the central line), but definitely not in the direction along the central
line. This problem has been extensively studied in the literature (e.g. Lighthill 1986;
Manners 1992; Rainey 1995, 1989; Galper, Miloh & Spector 1996) in the context of
estimating the wave loads acting on fixed rigid slender straight ocean structures. The
motivation for these studies was the timely need to introduce consistent higher-order
diffraction inertia terms (beyond the Morison approximation) for a large-diameter
vertical cylinder, in order to analyse nonlinear wave phenomena such as springing or
ringing (Faltinsen, Newman & Vinje 1995; Malenica & Molin 1995; Chaplin et al.
1997). In these papers the ratio between the radius of the cross-section of the structure
and the characteristic scale of the non-uniformity of the ambient flow field is treated as
a small parameter. At the leading-order (the so-called limit of a ‘hydrodynamic line’)
an exact formula for the loading per unit length, acting on the structure is derived,
leading to the important three-dimensional correction to the two-dimensional slender
body theory. This is often referred to as the ‘axial flow divergence’ (Rainey 1995
and Galper et al. 1996). A further extension to a stationary vertical large structure
with a variable (conical) cross-section, commonly found in an ice infested ocean
environment, is given by Galper & Miloh (1997).

The purpose of this work is to present a new concise analysis of the hydrodynamic
loads exerted on a slender deformable curved three-dimensional cylindrical structure
with an arbitrary cross-section moving in a time-dependent spatially non-uniform
ambient potential flow field. One of the important results obtained is an analytic
expression for the hydrodynamic load distribution (i.e. the force per unit length)
acting on a flexible or rigid long structure in terms of the spatial derivatives of the
imposed flow field. The motion of the central line can be either prescribed or coupled
with that of the surrounding flow and formulated as a combined hydroelastic problem
(fluid–elastic structure interaction).

We employ here a natural intrinsic reference frame (generalized Frenet frame lead-
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ing to Lagrangian model coordinates), attached to a curved smooth time-dependent
centreline. A rigorous theory of perturbation is then developed based on the assump-
tion that the cross-sectional radius of the structure is small compared with the typical
length scale of the ambient flow field non-uniformity. Employing the formalism of
Galper & Miloh (1995, § 2), it is demonstrated that instead of the complicated direct
method of pressure integration, one can obtain to leading order a rather simplified
analytic expression for the force distribution along the central line in terms of the
local (two-dimensional) added-mass tensor and the flow gradients evaluated on the
central line. A detailed rigorous theoretical investigation of the asymptotic limiting
procedure by which the two-dimensional surface is shrunk towards an effectively
one-dimensional (hydrodynamic) line, is also given.

The outline of the paper is as follows. In § 2 we consider the hydrodynamic loads
acting on a curved slender cylinder of arbitrary cross-section moving in a non-
uniform ambient flow field. The expressions for the loading are given in terms of
a two-dimensional tensor m̂ having the physical sense of a distribution of a three-
dimensional added-mass tensor for the cylinder along its central line. In § 3 this
distribution is further simplified for the ‘hydrodynamic line’ limit, i.e. in the limit
where the three-dimensional structure is treated as an effectively one-dimensional
line (see the Appendix). For this case asymptotic expressions are also obtained. The
physical force distribution acting on an arbitrary general curved cylinder which is
embedded in a weakly non-uniform ambient flow field is next derived in § 4 and § 5.
In § 6 the expression for the force distribution is further extended for deformable
cylindrical structures with a time-dependent central line. Finally, we also discuss in § 6
some new applications of this theory to the self-propulsion problem of a deformable
thin helix by considering the finite deformations of its central line.

2. Slender cylindrical body with curved central line
2.1. Weakly non-uniform approximation

Consider a deformable slender structure with a curved time-dependent smooth central
line C(t) of an arbitrary cross-section S . The equation of the centreline is given in
terms of its curvature κ, torsion τ and the arclength s measured along the centreline
as

κ = κ(s, t), τ = τ(s, t). (2.1)

We also denote by T± the upper and the lower bases of the cylinder respectively
and by 2H its total length. Thus, the total surface L(t) of the cylinder is given by
L(t) = (C(t)× S)∪T±. It is well known (see, for example, Novikov & Fomenko 1980)
that (2.1) defines the time-dependent centreline of the cylinder up to rigid motions in
three-dimensional space. The cylinder is placed in a non-uniform ambient unsteady
potential stream

V (x, t) = ∇φ(x, t), (2.2)

where x is the position vector in a laboratory coordinate system. The central line of
the cylinder can move in an arbitrary manner. The derivation is based on the general
methodology recently developed by Galper et al. (1996).

The total velocity potential ϕ, induced by the presence of the moving body, can be
uniquely decomposed into two parts:

ϕ = φ+ φ0, (2.3)
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where φ (harmonic inside L) is the ambient velocity potential and φ0 (harmonic
outside L) denotes the additional disturbance potential (Galper & Miloh 1995).

Let us introduce the outer Green function G(x, y, t) for the cylinder

∇2G(x, y, t) = 4πδ(x− y) (2.4)

with the corresponding boundary conditions on both L and infinity

∂

∂n(x)
G(x, y, t)

∣∣∣∣
x∈L

= 0, lim
|x|→∞

G(x, y, t) = 0. (2.5)

One can then express φ0 in an integral form as

φ0(x, t) = −
∫
L

G(x, y, t)(V · n)(y) dL(y), (2.6)

where n = n(y, t) denotes a unit normal vector to L directed outward into the fluid.
The total hydrodynamic force F acting on a fixed rigid body can be written (see

Galper & Miloh 1995) as

F (φ) =

∫
L

(
φ0

∂V

∂n
+ n

∂φ0

∂t

)
dL+

∫
v

(
∂V

∂t
+ (V · ∇)V

)
dv, (2.7)

where
∫
v

represents a three-dimensional integral over the volume (interior) of the
body.

For the case of a deformable body (central line varying with time) (2.7) should
be augmented by an additional force loading F (def) arising from the body’s pure
deformation (Galper & Miloh 1995)

F (def) =

∫
L

φ(d) ∂V

∂n
dL+

δ

δt

∫
L

nφ0 dL, (2.8)

where φ(d) is the corresponding deformation potential and δ/δt denotes the time-
derivative resulting only from the deformation of the body. The deformation potential
φ(d) can be expressed in terms of the Green function (2.4) as

φ(d)(x, t) =

∫
L

G(x, y, t) V (d)(y, t) dL(y), (2.9)

where V (d)(y, t) denotes the deformation velocity of the surface (see Miloh & Galper
1993).

Consider next the case where the characteristic length scale l of the non-uniformity
of the ambient flow field V is much larger than the characteristic length scale |S | of
the body’s cross-section (the so-called ‘weakly non-uniform’ field approximation). In
this case, there exists a small parameter

ε ∼ |S |
l
� 1. (2.10)

It is important to emphasize here that (2.7) does not actually represent the inte-
gration along the central line of the physical force distribution F̄ (z) (i.e. the force per
unit length) acting on the cross-section. Hence, it is necessary first to modify (2.7) (up
to leading-order terms in ε) in order to determine the actual force loading per unit
length on the cylinder.
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Figure 1. A deformable cylinder with a curved time-dependent central line C(s, t). The Frenet
triad {Θ(s, t),N (s, t),B(s, t)} is attached to the central line.

2.2. Generalized coordinates

To describe the kinematics of the curved central line C(t) it is convenient to introduce
a non-orthogonal coordinate system {x1 = s, x2 = y, x3 = z} induced by the Frenet
triad attached to the curved central line C(t) of the cylinder. Let us write the position
vector R(t) of a point on the surface L as

R = X (s, t) + yN (s, t) + zB(s, t), (2.11)

where X (s, t) represents the position vector of a point on the central line C(t),
{N ,B} denote the normal and bi-normal respectively and s is the natural parameter
(arclength) for C(t) (see figure 1). Using the following Frenet differential equations
(see Novikov & Fomenko 1990):

∂X

∂s
= Θ, |Θ| = 1,

∂Θ

∂s
= κN ,

∂N

∂s
= −κΘ + τB,

∂B

∂s
= −τΘ, (2.12)

one can derive the following fundamental matrix gij:

gij =
1

(1− κy)2

∣∣∣∣∣∣
1 τz −τy
τz (1− κy)2 + τ2z2 −τ2yz

−τy −τ2yz (1− κy)2 + τ2y2

∣∣∣∣∣∣ . (2.13)

Using (2.6) and letting ∂/∂n ≡ n(α)∇α, we next obtain∫
L

φ0 (n(α)∇α)V dL = −
∫ H

−H
ds

∫ H

−H
dś

∫
S

dr

×
∫
S

dŕ Hs(s, r) Hs(ś, ŕ) Vα(ś, ŕ) ∇β(r)V (s, r)nα(ś, ŕ)G(s, ś; r, ŕ)nβ(s, r), (2.14)

where we denote a surface element on the structure as dL ≡ ds dr Hs(s, r) with

Hs(s, r) = 1− κ(s)y. (2.15)

in the right-hand side of (2.14). Here and further when calculating
∫
L

we neglect
the direct contribution of the integration over the two bases T± of the cylindrical
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structure. These additional integrals will be accounted for later in § 4. Also, here and
in what follows, Greek symbols (α, β, γ) take the values 2, 3. Thus, Vα(s, r) represents
the two projections of V (s, r) on the basis vectors lying in the sth cross-section.

By extracting the product of the rate-of-strain tensor times the ambient velocity
out of the integration in (2.14) one obtains, by invoking the weak non-uniformity
assumption,∫

L

φ0 (n(α)∇α)V dL = −
∫ H

−H
ds

∫ H

−H
dśVα(ś, ŕ = 0) ∇βV (s, r = 0)

×
∫
S

dr

∫
S

dŕ Hs(s, r) Hs(ś, ŕ) nα(ś, ŕ)G(s, ś; r, ŕ) nβ(s, r) + O(ε2 log ε), (2.16)

where V (s, r = 0) ≡ V (X (s, t)).
One can now define the distribution of the added mass as a 2× 2 tensor mαβ(s, ś):

mαβ(s, ś) ≡ −
∫
S

dr

∫
S

dŕ Hs(s, r) Hs(ś, ŕ) nα(ś, ŕ)G(s, ś; r, ŕ) nβ(s, r). (2.17)

The real three-dimensional added-mass tensor M̂L of the cylindrical structure L is
related to m̂(s, ś) as

M̂L =

∫ H

−H
ds

∫ H

−H
dś; Ô(s) M̂(s, ś) Ô−1(ś), (2.18)

where the Frenet orthogonal matrix Ô(s) denotes the matrix of rotations of the Frenet
basis along the central line and the 3 × 3 matrix M̂(s, ś) ≡ diag(0, m̂(s, ś)). One can
then express (2.16) in terms of m̂α,β as∫

L

φ0 (n(α)∇α) V dL =

∫ H

−H
ds

∫ H

−H
dśVα(ś, ŕ = 0) mαβ(s, ś) ∇βV (s, r = 0). (2.19)

Next, we compute mαβ(s, ś) in the limit of the weakly non-uniform flow approximation.

3. Leading-order distribution of the added-mass tensor
Owing to the assumption of the weak non-uniformity of the ambient flow field, the

added-mass tensor mαβ(s, ś) is integrated in (2.19) with slowly varying functions of
s. Hence, a natural technique for evaluating the convolution (to leading order) with
such functions is to first find the Fourier image in the s-direction, namely

m̃αβ(k, ś) =

∫ H

−H
ds mαβ(s, ś) eiks, (3.1)

and then to substitute its inverse Fourier from the corresponding leading-order
Taylor expansion of m̃αβ(k, ś) back into the convolution (2.19). Furthermore, we
assume that both the curvature and torsion of the structure are small enough (i.e.
maxs κ(s)a = O(ε) and maxs τ(s)a = O(ε)), which corresponds to the general limiting
procedure of ‘hydrodynamic line’, where all parameters are considered as fixed as the
cross-section radius a tends to zero (Rainey 1995). Note that we do not impose any
restrictions on the s-derivatives of the curvature and torsion of the structure. It can
be shown (see the Appendix) that in the above-mentioned ‘hydrodynamic line’ limit,
the following asymptotic relationship holds:

˜̂m(k, ś) = 2π2a21̂ + O(ε2 log ε), (3.2)
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where 1̂ is the two-dimensional unit matrix. Thus, we finally find

m̂(s, ś) =
1

2π

∫ ∞
−∞

˜̂m(k, ś) e−iks dk = πa2δ(s− ś) 1̂ + O(ε2 log ε). (3.3)

This means that the individual planar cross-sections contribute independently to the
force distribution, as the hydrodynamic line limit is approached. The same statement
also holds for non-circular cross-sections of an arbitrary shape. The proof (omitted
here) is based on the comparison theorem (McIver & Evans 1985). The mathematical
expression (3.3), generalized for the case of a curved slender structure with an arbitrary
cross-section, is given by

m̂(s, ś) = m̂(0)δ(s− ś), (3.4)

where m̂(0) represents the two-dimensional added-mass tensor of the planar cross-
section. Substituting (3.4) into (2.18) renders the following generalization of the
well-known ‘strip’-theory formula (e.g. Tuck 1992) for the case of a slender structure
L with a curved central line:

M̂ (L) =

∫ H

−H
ds Ô(s) M̂ (0) Ô−1(s), (3.5)

with M̂ (0) ≡ diag (0, m̂(0))). For a circular cross-section, (3.5) yields the following
form:

(M)(L)
ij = σPδij − σ

∫ H

−H
ds Θi(s)Θj(s), (3.6)

where P is the perimeter of the curve L and σ denotes the area of the cross-section.
One immediately concludes that Tr(M̂ (L))) = 2Pσ. Clearly, for any planar curve, the
added mass in the direction orthogonal to the plane is Morth = σP . Hence, for a planar
curve with two mutually orthogonal axes of symmetry one immediately derives

M̂ (L) = Pσ diag (1, 1
2
, 1

2
). (3.7)

For the particular case of a torus, this result agrees with Miloh, Weisman & Weihs
(1978).

Consider further a helix described by

X (s, t) =

(
r0(t) cos

s

(r2
0 + p2)1/2

, r0(t) sin
s

(r2
0 + p2)1/2

, p(t)
s

(r2
0 + p2)1/2

)
, (3.8)

with pitch p and radius r0 of the cylinder on which the helix is inscribed. Using (3.6)
and the expression for Θ(s) = ∂X/∂s for the helix, one directly finds

M̂ (helix) = Pσ diag
(
r0κ0,

(
1− r0κ0

2

)
,
(

1− r0κ0

2

))
. (3.9)

For τ0 = 0, κ0 = 1/r0, the helix degenerates into a torus and (3.9) reduces to (3.7).

4. The correct force distribution
4.1. Elimination of the tangential forces acting on the bases

In this section we modify (2.7), which represents the full force acting on the body,
so as to obtain the corresponding expression for the physical pressure distribution to
the leading order in ε. Applying (2.7) as if it were a physical pressure distribution, we
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find some fictitious tangential stresses acting on the bases T± which are given by

F T± =

∫
T±
φ0

(
∂V

∂s

) ∣∣∣∣
T (±H)

d2T , (4.1)

where d2T represents the two-dimensional area of T±. We also denote by |T (s) the
corresponding projection of a vector on the plane normal to Θ(s). Using the particular
geometry of a cylindrical structure, one can interpret these additional forces as those
originated from an s-integration of some functions which are full s-derivatives, i.e.

F ±T =

∫ H

−H
df(s)

ds
ds

∣∣∣∣
T (±H)

. (4.2)

Hence, the correct ‘physical’ force distribution, denoted here by F̄ (s), is connected
with F (s) defined in (2.7), by

F (s) = F̄ (s) +
df(s)

ds
, (4.3)

where the unknown vector-function f(s) will be determined further.
Unfortunately, one cannot take this function f to be simply the right-hand side of

(4.1), since the term φ0∂V/∂s cannot be analytically continued from the bases into the
volume of the cylinder where φ0 has singularities. Hence, let us proceed in a manner
similar to Galper et al. (1996). The hydrodynamic moment about the centroid of
the structure (the origin of the body-attached coordinate system) is given (see § 2 in
Galper & Miloh 1995) by

M (φ) =

∫
L

(
φ0

∂(R ∧ V )

∂n
+ R ∧ n ∂φ0

∂t

)
dL+

∫
v

R ∧ DV

Dt
dv, (4.4)

where R(s, r) is the position vector (2.11). We will further use the notation

R(s, r) = X (s) + r, (4.5)

where X (s) is the position vector of a point on the central line and r is the position
vector at the sth cross-section. The full moment (4.4) acting on the body must be also
corrected, in a similar manner to (4.3), by including a full s-derivative term of some
function C (s), namely,

M (s) = M̄ (s) +
dC (s)

ds
. (4.6)

The physical moment distribution M̄ (s) is connected to the physical force distribution
F̄ (s) by

M̄ (s) = X (s) ∧ F̄ (s), (4.7)

which follows from a surface integration of the pressure term p.
We now use (2.7), (4.4) and (4.5) in order to write

M (s) = X (s) ∧ F (s) +M add(s), (4.8)

where

M add(s) ≡
∫
S

φ0(s, r)
∂

∂n
(r ∧ V ) dS + O(ε2 log ε). (4.9)

Based on the definitions (4.2) and (4.6) for the functions f and C respectively, it is
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concluded that

f(±H) =

∫
T±
φ0

(
∂V

∂s

) ∣∣∣∣
s=±H

d2T±, (4.10)

and

C (±H) =

∫
T±
φ0

∂

∂s
((X (s) + r) ∧ V (s))

∣∣∣∣
s=±H

d2T±. (4.11)

Next, by comparing (4.10) and (4.11), we find

C (s = ±H) = X (s = ±H) ∧ f(s = ±H) + l(s = ±H), (4.12)

where

l(s = ±H) ≡
∫
±T

d2T± φ0

(
r ∧ ∂V

∂s
+Θ ∧ V

)
. (4.13)

It is also seen that l(s = ±H) cannot be directly continued into v for any s, because
of the singular behaviour of φ0. Thus, we can only imply that (4.12) holds for C (s)
and f(s) in the sense that

C (s) = X (s) ∧ f(s) + l(s), (4.14)

where l(s) is some bounded function depending on the fluid variables (namely V
and φ0) which are taken at points of their analyticity, but otherwise do not explicitly
depend on s.

Substituting now F̄ (s) from (4.3) into (4.7) leads to

M̄ = X ∧ F − X ∧ df

ds
. (4.15)

After the substitution of (4.8) into (4.6) one obtains

M̄ = X ∧ F +M add − dC

ds
. (4.16)

Comparing (4.15) with (4.16) and using (4.14), we finally obtain

M add(s) = Θ(s) ∧ f(s) +
dl(s)

ds
, (4.17)

where we recall that Θ(s) is the tangential unit vector to the central line. The last
term on the right-hand side of (4.17) when substituted in (4.3) leads to a second-order
s-derivative of a bounded function l(s) and hence results in terms of order ε2 in the
force distribution (see Galper et al. 1996). Thus, one can neglect the last term on the
right-hand side of (4.17) in comparison with the first term. It then follows from (4.17)
that

f(s)
∣∣
T

= M add(s) ∧Θ(s) + O(ε2 log ε). (4.18)

Let us use now a formula which follows from (2.12) and the expansion of any vector
along the Frenet basis

df

ds

∣∣∣∣∣
T

=

(
df
∣∣
T

ds

)∣∣∣∣∣
T

+ κfΘ N , (4.19)

where fΘ ≡ f ·Θ denotes the tangential component of the vector f. We can rewrite
(4.3) using 4.19 as

F̄ (s)
∣∣
T

= F (s)
∣∣
T
− d

(
f
∣∣
T

(s)
)

ds

∣∣∣∣
T

− κfΘ N , (4.20)

where the curvature appears explicitly in the last term.
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4.2. The elimination of the tangential forces acting on the face cylinder

One can then directly determine fΘ up to O(1) by noticing that, by virtue of (2.16),
there exist some fictitious tangential forces acting on the face cylinder, i.e. on the
cylinder without its bases.

These non-physical forces FΘ(s) can be corrected with the help of f(s) and using
(2.12) as∫ H

−H
ds FΘ(s) Θ(s) =

∫ H

−H
ds

∂

∂s
(fΘ(s) Θ(s)) =

∫ H

−H
ds

(
∂fΘ(s)

∂s

)
Θ(s) + O(κa).

(4.21)
Note that the product fΘ(s = ±H)Θ(s = ±H) has the meaning of a pointed ‘response’
pressure acting on the bases in the normal direction (see Galper et al. 1996, § 8). Using
further (2.7) and (3.3) one obtains

FΘ(s) = −
∫ H

−H
ds

∫ H

−H
dśVα(ś, ŕ = 0)∇β(s)VΘ(s, r = 0)

∫
S

dr

∫
S

dŕ

×Hs(s, r) Hs(ś, ŕ) nα(ś, ŕ)G(s, ś; r, ŕ) nβ(s, r)

= πa2

∫ H

−H
ds Vα(s, ŕ = 0)∇α(s)VΘ(s, r = 0)

=
πa2

2

∫ H

−H
ds

∂

∂s
(Vα(s, r = 0)Vα(s, r = 0)) + O(κa), (4.22)

where we use

∇αVΘ(s, r = 0) =
∂

∂s
Vα + O(κa). (4.23)

Hence, to leading order (i.e. up to O(1)) one obtains

fΘ(s) =
πa2

2

(
V
∣∣
T

)2
(s, r = 0). (4.24)

For a non-circular cylinder one obtains by using (3.4) and similarly to (4.20)–(4.24)

fΘ(s) =
m

(0)
αβVαVβ

2
, (4.25)

which together with (4.20), (4.18) and (4.25) enables us to uniquely determine F̄ (s) up
to the leading order.

The correct physical force distribution is then obtained from (2.7) and (4.3) as

F̄ (s)
∣∣
T

=

∫ H

−H
dś mαβ(s, ś) (Vα(ś, ŕ = 0) ∇β) V (s, r = 0)

∣∣
T

+

∫ H

−H
dś m̂(s, ś)

∂V (ś, ŕ = 0)|T
∂t

+σ
DV

Dt
(s, r = 0)

∣∣
T

+
∂

∂s

(
M add(s) ∧Θ(s)

) ∣∣
T

−κ(s)

2
m

(0)
αβVαVβ N (s). (4.26)
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In deriving (4.26), we employ the following substitution for the last integral in (2.7):∫ H

−H
ds

∫
σ

DV

Dt
(r, s) d2r =

∫ H

−H
ds

DV

Dt
(0, s)

∫
σ

(1− κ(s)y) d2r = σ

∫ H

−H
ds

DV

Dt
(r = 0, s),

(4.27)
where σ denotes the area of the cross-section and recalling that

∫
σ
y d2r = 0.

5. The force distribution on a curved cylinder
Substituting (3.4) into (2.19) one finds in the limit of the hydrodynamic line that∫ H

−H
ds φ0 ((nα∇α)V )

∣∣
T

=

∫ H

−H
ds (Vα m

(0)
αβ∇β)

(
V (s)

∣∣
T

)
, (5.1)

since (∇αV (s))
∣∣
T

= (∇α) (V (s)
∣∣
T

)
. The second integrand on the right-hand side of

(2.7) can be written in a similar manner as∫
L

nα
∂φ0

∂t
dL =

∫ H

−H
ds m(0)

αβ

∂Vβ(s, r = 0, t)

∂t
. (5.2)

Let us next calculate the additional force loading f(s) given by (4.24) and (4.18) in
the hydrodynamic line limit (3.3). It can then be shown similarly to (4.24)–(5.2) and
by using (3.4) that

Madd ∧Θ∣∣
T

= −Vθ
(
M̂

(0)
V
) ∣∣

T
+ O(ε2). (5.3)

Next, by gathering (4.19)–(5.3), one finally obtains the following expression for the
physical force distribution:

F̄ (s)
∣∣
T

= σ

(
DV (s)

Dt

) ∣∣∣∣
T

+ (Vα m
(0)
αβ∇β)

(
V (s)

∣∣
T

)
+ m̂(0) ∂V |T

∂t

+

((
VΘ

∂

∂s

)(
m̂(0)V

∣∣
T

)) ∣∣∣∣
T

+
∂Vθ

∂s

(
m̂(0)V

∣∣
T

)− κ

2
(V T · m̂(0)V T ) N + O(ε2 log ε).

(5.4)

It can be shown that the next order terms on the right-hand side of (5.4) are of
O(ε2 log ε) (see Galper et al. 1996). Equation (5.4) reduces exactly to the expressions
recently presented in Rainey (1995) and Galper et al. (1996, equations (45), (46)) for
the force loading acting on a straight cylinder (i.e. for κ = τ = 0).

For a circular cross-section m(0)
αβ = σδαβ and (5.4) can be further simplified to

F̄ (s)
∣∣
T

= σ

(
DV (s)

Dt

) ∣∣∣∣
T

+ σ(Vα∇α) (V (s)
∣∣
T

)
+ σ

∂V |T
∂t

+ σ

((
VΘ

∂

∂s

)(
V
∣∣
T

)) ∣∣∣∣
T

+σ
∂Vθ

∂s
V
∣∣
T
− σκ

2
(V T ·V T ) N + O(ε2 log ε). (5.5)

It can be also written in a slightly different form. First, by using (4.19) one derives

(Vα∇α) (V ∣∣T (s)
)

+
∂V

∂t

∣∣∣∣
T

+

((
VΘ

∂

∂s

)(
V
∣∣
T

)) ∣∣∣∣
T

=

(
DV (s)

Dt

) ∣∣∣∣
T

− κV 2
Θ N , (5.6)

where the substantial time-derivative operator is defined as

D

Dt
≡ ∂

∂t
+ Vα∇α +

VΘ(s)

1− κ(s)y

∂

∂s
. (5.7)
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It is further remarked that one can replace D/Dt by

D(s)

Dt
=

∂

∂t
+ Vα∇α + VΘ

∂

∂s
+ O(ε2), (5.8)

due to the fact that in the limit of a hydrodynamic line, the operator D/Dt is actually
applied on the central line (i.e. for y = z = 0). The force loading (5.4) can then be
expressed for a circular cylinder in a more compact form in terms of the ambient
fluid acceleration a ≡ DV /Dt, by combining (5.6) and (5.8), as

F̄ (s)
∣∣
T

= 2σa
∣∣
T

+ σ
∂Vθ

∂s
V

∣∣∣∣
T

− σκ

2
(|V |2 + V 2

Θ) N + O(ε2 log ε). (5.9)

Expressed in component form on the Frenet basis, (5.9) also reads

FN(s) = 2σaN + σ
∂Vθ

∂s
VN − σκ

2
(|V |2 + V 2

Θ) + O(ε2 log ε), (5.10)

FB(s) = 2σaB + σ
∂Vθ

∂s
VB + O(ε2 log ε). (5.11)

Thus, one concludes that in the limit of a hydrodynamic line, the curvature of
the structure contributes directly to the force distribution only through the last
terms on the right-hand side of (5.10) and (5.11). These terms have the physical
sense of a central-attraction force. It is also shown that the torsion of the structure
does not directly contribute to the force distribution and it is accounted for only
indirectly through the varying orientation of the corresponding cross-section planes.
It is important to emphasize here that the total force acting on a straight structure in
a uniform flow field (i.e. a = 0) is always equal to zero. However, for a non-straight
central line there exists a non-zero force distribution. One obtains next (using the
Frenet equations (2.12)) that for a uniform flow field ∂Vθ/∂s = κVN . Thus, for a
uniform flow field (5.9) takes the following form:

F̄ (s)
∣∣
T

= σκ
(
VNV

∣∣
T
− 1

2
(|V |2 + V 2

Θ) N
)

+ O(ε2 log ε). (5.12)

For a rigid cylindrical structure moving with a velocity U (t), yet an additional force
loading arises (see Galper et al. 1996, § 6). This additional force distribution can be
simply obtained based on the Galilean principle by rewriting (5.9) in a coordinate
system moving with the constant velocity U . Thus, by replacing V in (5.9) by V −U
and VΘ(s) by VΘ(s) − UΘ(s), where UΘ(s) ≡ U ·Θ (without altering a), we finally
obtain

F̄ (s)
∣∣
T

= 2σa
∣∣
T

+ σ
∂Vθ

∂s
(V −U )

+σκUN(V −U )
∣∣
T
− σκ

2
(|V −U |2 + (VΘ −UΘ)2) N + O(ε2 log ε). (5.13)

In deriving (5.13) we used that ∂Uθ/∂s = κUN . For κ = 0 and τ = 0 (straight rigid
cylinder) we recover (56) and (57) of Galper et al. (1996).

6. Force distribution due to a deforming central line
6.1. General formula

In this section we consider the general motion of a deformable structure with a
time-dependent central line C(s, t). Let us denote the deformation velocity of a point
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s on C(s, t) by U (d)(s, t). Clearly, for a structure with a fixed centroid location and
fixed directions of its main axes (see Miloh & Galper 1993)

U (d)(s, t) =
∂X (s, t)

∂t
. (6.1)

Note that the deformation velocity is connected with the time- and s-derivatives of
the curvature and torsion by the corresponding partial differential equation (see, for
example, Ricca 1994). The normal (to the cylindrical structure L) component of this
deformation velocity is given by

V (d)(s, r, t) = n(s, r, t) ·U (d)(s, t), (6.2)

where n(s, r, t) is the outward normal to the surface. Substituting (6.2) into (2.8) and
using (2.9) leads in the hydrodynamic line limit (compare with (2.19)) to∫

L

φ(d) ∂V

∂n
dL = −

∫ H

−H
ds

∫ H

−H
dś V (d)

α (ś, t) mαβ(s, ś)∇βV (s, r = 0). (6.3)

Choosing to express the leading order of mαβ(s, ś) in the form of (3.3), one obtains∫
L

φ(d) ∂V

∂n
dL = −σ

∫ H

−H
ds
(
U(d)
α (s)∇α)V (s, r = 0). (6.4)

The last term on the right-hand side of (2.8) reads to leading order (using (2.9) and
(3.3))

δ

δt

∫
L

nφ0 dL = σ

∫ H

−H
ds
δV (X (s, t))

δt

= σ

∫ H

−H
ds

(
∂X

∂t
· ∇X

)
V (X (s, t)) = σ

∫ H

−H
ds
(
U (d)(s, t) · ∇X)V (X (s, t)). (6.5)

Combining (6.4) and (6.5) we derive∫
L

φ(d) ∂V

∂n
dL+

δ

δt

∫
L

nφ0 dL = σ

∫ H

−H
ds U(d)

Θ

∂V

∂s
. (6.6)

It can be further shown, in a manner similar to (4.1)–(4.17), that the correction vector
f(d)(s) which accounts for the deformation is given by

f(d)
∣∣
T

=

(∫
S

φ(d) ∂(r ∧ V )

∂n
ds

)
∧Θ(s) + O(ε2), (6.7)

which can be further reduced in the hydrodynamic line limit to

f(d)
∣∣
T

= −σVΘU (d)
∣∣
T
. (6.8)

Proceeding next along the same lines as (4.20)–(4.24), one derives

f
(d)
Θ = −σ

∫ H

−H
ds U(d)

α (s) ∇α(s)VΘ(s, r = 0)

= −σ
∫ H

−H
ds

∂

∂s

(
U(d)
α (s)Vα(s, r = 0)

)
+ O(ε), (6.9)

where, in deriving (6.9), we used that ∂Uα(s)/∂s = O(ε). Thus, (6.9) finally reduces to

f
(d)
Θ = −σU (d)

∣∣
T
·V ∣∣

T
+ O(ε). (6.10)
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Summarizing (6.4)–(6.10) and using (4.19), we conclude therefore that the additional
loading per unit length exerted on a curved slender structure due to its own deforma-
tion, can be written as

F̄
(d)

(s)
∣∣
T

= σ U
(d)
Θ

∂V

∂s

∣∣∣∣
T

−σ ∂

∂s

(
VΘ(s)U (d)(s)

∣∣
T

) ∣∣∣
T

+σκ
(
U (d)(s)

∣∣
T
·V (s)

∣∣
T

)
N . (6.11)

In (6.11) the ambient velocity V (s) and its cross-sectional derivatives are all evaluated
on the central line of the structure, i.e. V (s) ≡ V (X (s, t)), etc. One can also rewrite
(6.11), using (4.19), in a slightly different form:

F̄
(d)

(s)
∣∣
T

= σ U
(d)
Θ

∂V

∂s
− σ ∂

∂s

(
VΘ(s)U (d)(s)

) ∣∣
T

+ σκ(U (d)(s) ·V (s)) N . (6.12)

It must be also noted that the total force acting on the slender structure due to pure
deformations is given by

F (d) = σ

∫ H

H

U
(d)
Θ

∂V

∂s

∣∣∣∣
T

ds+ O(ε2). (6.13)

Thus, by combining the forces (5.5) and (6.11) we finally obtain the full force
distribution acting on the curved deformable structure:

F̄ (s)
∣∣
T

= 2σa
∣∣
T

+U
(d)
Θ

∂V

∂s

∣∣∣∣
T

+ σ VΘ(s)

(
∂

∂s

(
V (s)−U (d)(s)

) ∣∣
T

) ∣∣∣∣
T

+σ
∂VΘ

∂s
(V −U (d))

∣∣
T
− σκ

2

((
V
∣∣
T

)2 − 2V
∣∣
T
·U (d)

∣∣
T

)
N + O(ε2 log ε).

(6.14)

Let us consider next a cylindrical structure L embedded in a stationary ambient
flow field. We assume in addition that the deformation of its central line is periodic
with a certain eigenfrequency ω (induced, for example, by the inner elasticity of
the structure). It is also implied that the amplitude A of the deformation is small,
i.e. A � l, where l is the characteristic length scale of the ambient flow field non-
uniformity. Taking the average of (6.12) over one period (denoted here by 〈 · 〉), we
obtain using (6.1)〈

U
(d)
Θ

∂V

∂s

〉
= O(ε2),

〈
∂VΘ(s)

∂s
U (d)(s)

〉
= O(ε2),

〈
VΘ(s)

∂U (d)(s)

∂s

〉
= O(ε2), (6.15)

as full time derivatives. Finally, the only term surviving the time averaging is〈
F̄

(d)
N (s)

〉
= −σ (〈κ(s)U (d)〉 ·V ) N + O(ε2). (6.16)

We do not average
∣∣
T

and N (t) here, because we are interested in the averaged
force acting on the same material cross-section. Note that for a small (infinitesimal)
deformation the deformational velocity is proportional to the time-derivatives κ̇ and τ̇
(a result which for a small deformation can be obtained by a Taylor expansion of the
deformation velocity). Hence, we conclude that in order to have a non-zero average
cross-sectional force, the term 〈κ(∂(τ)/∂t)〉 must be non-zero. Thus, the curvature
and torsion deformation modes of the structure L should have some out-of-phase
component in order for a persistent cross-sectional loading to exist.

The presence of a finite time-averaged load acting on an elastic structure can lead
to a bifurcation of its averaged equilibrium position (Goriely & Tabor 1997). It can
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also, in its turn, increase the knottiness of an elastic slender cable embedded in an
ambient stream.

6.2. Self-propulsion of a helix

We apply here the asymptotic expression (3.9) for the added mass of a helix for
analysing the problem of self-propulsion of a deformable helix in a quiescent fluid or
for the self-locomotion problem of a bacterial fibre (Shi & Hearst 1994). It is shown
that by enforcing a specially prescribed finite periodic deformation of its central line,
the helix (3.8) can propel itself with a persistent velocity (time averaged over the
period). Following Miloh & Galper (1993), the velocity V (c) of the centroid of a
deformable helix L (initially at rest) moving in an otherwise quiescent fluid is given
by

V (c) = (ρbvl̂ + M̂)
−1
∫
L

φ(d) n dL, (6.17)

where ρb denotes the density of the body. Proceeding in a similar manner to (6.4),
and invoking the hydrodynamic line limiting procedure, (6.17) yields for a circular
cross-section

V (c) = σ(ρbvl̂ + M̂)
−1
∫ H

−H
ds U (d)

∣∣
T (s)
. (6.18)

Taking the projection of (6.18) on the axis of symmetry of the helix e3 and using
(3.9), we derive (see, for example, Ricca 1994)

V
(c)
3 =

1

P (ρb + κr0)

∫ H

−H
ds U (d)

∣∣
T (s)
· e3 =

P

2(ρb + κr0)
κ

dp

dt

r0

(r2
0 + p2)1/2

, (6.19)

where P is the total perimeter and r0 and p denote the radius and pitch of the helix
respectively. To illustrate the optimal strategy of self-propulsion let us consider the
case of a massless body where ρb � 1. After taking the time average, denoted by 〈·〉,
of (6.19) one obtains〈

V
(c)
3

〉
=
P

2

〈
dp/dt

(r2
0 + p2)1/2

〉
= −P

2

〈
dτ/dt

(τ2 + κ2)1/2

〉
. (6.20)

Equation (6.20) demonstrates (see also the discussion in Miloh & Galper 1993;
Shapere & Wilczek 1990; Benjamin & Ellis 1990) that an efficient self-propulsion
mechanism must include two mutually skew-symmetric surface modes (i.e. torsion
and curvature in our case) with a π/2 phase shift between them for maximum
efficiency.

7. Summary
A rigorous derivation of the formulae for computing the force loading on a three-

dimensional cylindrical structure with a curved (finite curvature and torsion) central
line is presented in the limit of a hydrodynamic line. In this limit the characteristic
length scale of the ambient flow field and also the principal radii of its central line
are assumed to be much larger than the radius of the cross-section of the structure.
No other restrictions on the geometry of the three-dimensional structure and on the
derivatives of its curvature and torsion are imposed.

The construction of the corresponding asymptotic analysis for the outer Green
function of the structure is first applied to the problem of determining the added
mass of a deformable thin structure. We determine the corresponding extension of
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the ‘strip theory’, known for straight structures with a variable cross-section. As an
example, we obtain the asymptotic added masses for an arbitrary thin helix. Based
on this, we present a certain type of finite-amplitude self-propulsion mechanism of
a deformable helix, which originates from interactions of torsion–curvature modes.
This is the first time that an optimal strategy of self-locomotion with non-restricted
amplitude of deformation has been proposed.

This mechanism may lead, for example, to a non-trivial persistent cross-sectional
loading on a curved vibrating deformable structure, resulting from nonlinear interac-
tions between the curvature and torsion modes coupled with the ambient flow field
non-uniformity. This term tends to reduce the force loading on a curved structure
compared with that exerted on a straight structure having the same cross-section.

This work was supported by the Israeli Science Foundation, Contract No. 544 222.
The partial support from the Ocean Technology Division of ONR (N00014-97-1-0039)
is also acknowledged.

Appendix. The added-mass tensor
A.1. Laplace equation in generalized coordinates

Let us first express (2.4) in the coordinate system (2.11) using the following expression
for the Laplacian in an arbitrary generalized coordinate system (Novikov & Fomenko
1990):

∇2φ = gij
∂2φ

∂xixj
+

1

|g|1/2
∂

∂xj
(|g|1/2gij) ∂φ

∂xi
, (A 1)

where |g| denotes the determinant of the matrix gij given by (2.13). One can readily
verify, using (2.13) that |g| = (1− κy)2. It is convenient at this stage to introduce
polar coordinates r and θ at every cross-section as y = r cos θ, z = r sin θ. Direct
calculations of the various terms in (A 1) lead to

gij
∂2

∂xixj
= ∆yz +

1

(1− κ(s)y)2

(
∂

∂s
+ τ(s)

∂

∂θ

)2

, (A 2)

where ∆yz denotes the two-dimensional Laplacian, i.e. ∆yz ≡ (∂2/∂y2 + ∂2/∂z2
)
.

For the second term on the right-hand side of (A 1) one obtains after some tedious
calculations

1

|g|1/2
∂

∂xj

(
|g|1/2gij

) ∂

∂xi
= − κ

1− κy
∂

∂y
+
∂κ(s)

∂s

y

(1− κy)3

(
∂

∂s
+ τ

∂

∂θ

)
+

τ2r

(1− κy)3

(
κr

∂

∂y
− ∂

∂r

)
. (A 3)

In order to apply (A 1)–(A 3) to the Green function G(s, ś; r, ŕ) expressed now in the
generalized coordinates (2.4), we write the δ-function as

δ(x− x́) =
1

|g|1/2 δ(s− ś)δ(r − ŕ), (A 4)

where r is the two-dimensional position vector in the cross-section. Combining (A 1)–
(A 4) in a single equation replacing (2.4), we finally obtain for the Green function
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G(s, ś; r, ŕ);(
∆yz ((1− κy)) +

1

(1− κ(s)y)

(
∂

∂s
+ τ(s)

∂

∂θ

)2
)
G(s, ś; r, ŕ)

+

(
∂κ(s)

∂s

y

(1− κy)2

(
∂

∂s
+ τ

∂

∂θ

)
+

τ2r

(1− κy)2

(
κr

∂

∂y
− ∂

∂r

))
G(s, ś; r, ŕ)

= 4πδ(s− ś)δ(r − ŕ). (A 5)

Consider first the particular case of a circular cross-section with a constant radius a
(i.e. S = r − a = 0). The corresponding boundary condition for such a cylinder reads
now

∂

∂r
G(s, ś; r, ŕ)

∣∣
r=a

= 0, (A 6)

which is supplemented by demanding a proper exponential decay at infinity.

A.2. The limit of hydrodynamic line

It is convenient to denote

(1− κy)G(s, ś; r, ŕ) ≡ Γ (s, ś; r, ŕ). (A 7)

One can then rewrite (A 5) and (A 6) in terms of Γ using the polar coordinates and
the two-dimensional Laplacian ∆rθ as

∆rθΓ +
1

(1− κ(s)y)2

∂2Γ

∂s2
+ D̂Γ = 4πδ(s− ś)δ(r − ŕ), (A 8)

where the differential operator D̂ is defined by

D̂(s, r) =
1

(1− κy)2

(
τ
∂2

∂θ∂s
+
∂τ

∂s

∂

∂θ
+ τ2 ∂

2

∂θ2

)
+

r cos θ

(1− κy)3

∂κ

∂s

(
∂

∂s
+ τ

∂

∂θ

)
− τr

(1− κy)2

∂

∂r
− τ2rκ sin θ

(1− κy)2

∂

∂θ
. (A 9)

The impermeable boundary condition (A 6) now takes the form

∂

∂r
Γ +

κ cos θ

1− κyΓ
∣∣∣∣
r=a

= 0. (A 10)

Next we apply the operator of Fourier transform F̂ in the s-direction to (A 8). Note
that, as we will show below, the image of Γ which is denoted here by F̂Γ (s, ś, r) ≡
Γ̃ (k, ś, r, ŕ), has a finite limit for k → 0 (i.e. in the limit of the hydrodynamic line) and
hence

Γ (s, ś, r, ŕ) ∼ δ(s− ś) + O(ε2). (A 11)

Correspondingly, F̂(D̂Γ ) =
˜̂
DΓ̃ + O(ε2), where the differential operator

˜̂
D(k, ś, r) is

essentially the same as the operator D̂(s, ś, r), but with ∂/∂s replaced by k, ∂κ(s)/∂s
replaced by kκ(ś) and ∂τ(s)/∂s by kτ(ś). Thus, we obtain the following governing
equation for Γ̃ :(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− k2

(1− κy)2

)
Γ̃ (k, ś, r, ŕ)+

˜̂
DΓ̃ (k, ś, r, ŕ) = 4πeikśδ(r− ŕ), (A 12)
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with the corresponding boundary condition

∂

∂r
Γ̃ +

κ(ś) cos θ

1− κ(ś)a cos θ
Γ̃

∣∣∣∣
r=a

= 0, (A 13)

where the differential operator
˜̂
D is defined as

˜̂
D(ś, r) =

1

(1− κ(ś)y)2

(
2kτ(ś)

∂

∂θ
+
kκ(ś)(rτ(ś) cos θ)

1− κ(ś)y

∂

∂θ

+τ2(ś)
∂2

∂θ2
− τ2(ś)rκ(ś) sin θ

∂

∂θ

)
+
k2κ(ś)r cos θ

(1− κy)3
− τ2(ś)r

(1− κy)2

∂

∂r
. (A 14)

It can be shown that the term D̂Γ̃ can be neglected in comparison with the first term
on the left-hand side of (A 12), being of order ε2 at the vicinity of L (r ∼ a), i.e. just
where the convolution limit of (2.16) is located. It is also emphasized that the term
proportional to k2Γ̃ is kept in (A 12), so as to guarantee the correct (exponential)
decay of Γ̃ at infinity.

Let us next define the following Fourier transform:

Φ̃α(k, ś, r) ≡ eikś

∫
S

dŕΓ̃ (k, ś; r, ŕ)nα(ś, ŕ). (A 15)

Combining (A 12) (with D̂ = 0), (A 13) and (A 15) we obtain(
∆rθ − k2

)
Φ̃α(k, ś, r) + O(ε3) = 0, (A 16)

subject to the boundary condition

∂Φ̃α

∂r
+ κ(ś) cos θ Φ̃α

∣∣
r=a

= eikśnα
∣∣
r=a

+ O(ε2). (A 17)

In deriving (A 16) and (A 17) we used the expansions

k2

(1− κr cos θ)2

∣∣∣∣
r∼a

=k2(1+2κr cos θ)
∣∣
r∼a+O(ε2),

1

(1− κa cos θ)
=(1+κa cos θ)+O(ε2).

We seek a solution of (A 16) decaying at infinity (helped by (A 17)). For say α = 2
this solution is expressed in the following form:

Φ̃2(k, r, θ) = eikś(A0(k)K0(kr) + A1(k)K1(kr) cos θ + A2(k)K2(kr) cos 2θ + · · ·), (A 18)

where Kn are the corresponding cylindrical Bessel functions of order n.
Only the terms with A0, A1 and A2 survive the integration of (A 18), with the

normals in (2.16), which when combined together with (A 15), finally leads to

m22(s, ś) ≡ −
∫
S

dr

∫
S

dŕHs(s, r) Hs(ś, ŕ) n2(ś, ŕ)G(s, ś; r, ŕ)n2(s, r)

= −
∫
S

dr (1− aκ(ś) cos θ) cos θ F̂−1(Φ̃2(ś, k, r))

= 2π2aF̂−1

(
A1(k)K1(ka)− κaA0(k)K0(ka)− κa

2
A2(k)K2(ka)

)
(A 19)

where F̂−1 represents the inverse Fourier transform. The distributed two-dimensional
added-mass tensor is diagonalized, i.e. mαβ(s) = diag(m22, m33) with m22 = m33. Sub-
stituting (A 18) in (A 17) leads, after successive integrations with cosmθ for m = 0, 1
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and by keeping only leading-order terms in κa, to

A0 = − κK1(ak)

2kK̇0(ak)
A1, A1 =

1

kK̇1(ak)α1

− κ

2kα1

K2(ak)

K̇1(ak)
A2, (A 20)

where

α1 ≡ 1− κ2

2k2

K0(ak)K1(ak)

K̇0(ak)K̇1(ak)
. (A 21)

The overdot denotes differentiation with respect to the argument.
Using (A 20)–(A 21) we have(

A1(k)K1 − κaA0(k)K0 − κa

2
A2(k)K2

)
=

K1

kK̇1α1

(
1 +

κ2a

2k

K0

K̇0

)
+A2

κK2

2kα1

(
K1

K̇1

+
κ2K0K1

2kK̇0K̇1

+ kaα1

)
(A 22)

where all functions are evaluated at the point ak. Using the following expansions:

K0(kr) = log (kr) + O(k2r2 log kr), Kn(kr) ∼ 1

(kr)n
+ O(kn−1rn−1), n > 0, (A 23)

it is found that the term with A2 in (A 22) is exactly zero (up to leading-order in ak).
Indeed, in the limit of a hydrodynamic line, we use

α1(ak) = 1 +
κ2a2

2
log ka,

K1(ak)

K̇1(ak)
= −ka, K0(ak)K1(ak)

K̇0(ak)K̇1(ak)
= −k2a2 log ak (A 24)

which nullifies the second parenthesis on the right-hand side of (A 22).
Hence, following (A 23), the only remaining terms in (A 22) are(

A1K1(ka)− κaA0(k)K0(ka)− κa

2
A2(k)K2(ka)

)
= a+ O(a2k2 log ak). (A 25)

Finally, substituting (A 25) into (A 19), we finally obtain (3.2).
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